教师系列


基本信息

目前就职: 特殊环境物质科学研究院

地址: 哈尔滨工业大学(深圳)信息楼707室

学科:材料科学与工程,核科学与技术

主页地址:http://faculty.hitsz.edu.cn/lijin

科研领域: 从事金属材料在极端环境(辐照、剧烈变形等)中的原位分析,以及新型磁控溅射技术的开发与应用研究工作。

个人简介


李瑨,核反应堆环境模拟与研究系统主任设计师,哈工大(深圳)副研究员。

金属材料在极端环境下的微结构-性能内禀关联机理的原位技术分析研究,即在透射和扫描电子显微镜中,原位观测材料微组织在不同极端环境下的演化,是材料领域国际前沿热点之一。李瑨博士近年来主要从事金属材料在极端环境(辐照、剧烈变形等)中的原位分析,以及新型磁控溅射技术的开发与应用,并取得了一些国际同行认可的学术成绩。

目前,拥有美国专利2项,在国际高水平杂志上发表论文 70 余篇,包括Progress in Materials Science、Science Advances、Nature Communications以及20篇Acta Materialia。多次担任Science Advances, Acta Materialia, Scripta Materialia等杂志的特邀审稿人以及JOM杂志的专刊特邀编辑,还应邀担任国际会议 Materials Science & Technology 2019 的分会主席,并在国际会议、国际著名高校、美国国家研究室等受邀报告20余次。承担及参与国家自然科学基金重点、青年,广东省重点领域研发计划子课题等各类纵向与横向项目10余项。目前,李瑨博士主要负责哈工大(深圳)特殊环境物质科学研究装置-核辐照模拟与研究系统的建设工作。整个系统的建设规模预计在1.5亿元左右,目标建成国际领先、规模最大、功能最全的核反应堆离子环境模拟与研究平台。


研究方向


结构功能一体化材料,材料辐照效应,高能脉


教育经历


2013 - 2017 (博士) 材料科学与工程, 美国德克萨斯A&M大学 (Texas A&M University)

2009 - 2012 (硕士) 应用物理, 日本东北大学 (Tohoku University)

2004 - 2008 (学士) 应用物理, 哈尔滨理工大学


工作经历


2019 - 至今,副研究员,哈尔滨工业大学(深圳)- 特殊环境物质科学研究院

2017 - 2019,博士后研究员, 美国普渡大学(Purdue University)


科研项目


2021.01 - 2023.12:材料辐照损伤与辐照效应,国家自然科学基金,负责

2021.01 - 2022.12:离子辐照对先进纳米晶金属材料结构与性能影响及机制研究,深圳市稳定支持,负责

2020.01 - 2022.12:基于先进磁控溅射技术的涂层制备及其辐照性能研究,深圳市引进人才经费,负责


荣誉及奖励


2019,美国矿物、金属与材料学会(TMS)墙报论文奖第一名

2017,美国真空学会(AVS)杰出研究生奖第一名

2016,美国材料学会(MRS)杰出研究生奖

2013 - 2017,研究助手奖学金, 美国德克萨斯A&M大学

2009 - 2011,在日留学外国学生奖学金


论文专著


1.Su, R., et al., The influence of stacking faults on mechanical behavior of advanced materials. Materials Science and Engineering: A, 2021. 803: p. 140696.

2.Shang, Z., et al., Heavy ion irradiation response of an additively manufactured 316LN stainless steel. Journal of Nuclear Materials, 2021. 546: p. 152745.

3.Ding, J., et al., Thermal Stability of Nanocrystalline Gradient Inconel 718 Alloy. Crystals, 2021. 11(1): p. 53.

4.Ding, J., et al., Characterization of precipitation in gradient Inconel 718 superalloy. Materials Science and Engineering: A, 2021. 804: p. 140718.

5.Zhang, Y., et al., Deformation behavior and phase transformation of nanotwinned Al/Ti multilayers. Applied Surface Science, 2020. 527: p. 146776.

6.Yu, K., et al., Recent Studies on the Microstructural Response of Nanotwinned Metals to In Situ Heavy Ion Irradiation. JOM, 2020. 72(1): p. 160-169.

7.Su, R., et al., Ultra-high strength and plasticity mediated by partial dislocations and defect networks: Part II: Layer thickness effect. Acta Materialia, 2020. 204: p. 116494.

8.Su, R., et al., Ultra-high strength and plasticity mediated by partial dislocations and defect networks: Part I: Texture effect. Acta Materialia, 2020. 185: p. 181-192.

9.Shang, Z., et al., He ion irradiation response of a gradient T91 steel. Acta Materialia, 2020. 196: p. 175-190.

10.Niu, T., et al., Recent Studies on Void Shrinkage in Metallic Materials Subjected to In Situ Heavy Ion Irradiations. JOM, 2020: p. 1-9.

11.Niu, T., et al., In-situ studies on the mechanical properties of He ion irradiated nanotwinned Ag. Journal of Nuclear Materials, 2020. 540: p. 152392.

12.He, J., et al., Microstructure evolution and deformation behavior of Au–20Sn eutectic alloy during hot rolling process. Journal of Alloys and Compounds, 2020. 831: p. 154824.

13.He, J., et al., Plastic instability and spheroidization in a nanolayered Au-20Sn alloy during the hot rolling process. Materials Characterization, 2020. 166: p. 110459.

14.Fan, C., et al., Irradiation induced void spheroidization, shrinkage and migration in Cu at elevated temperatures: An in situ study. Acta Materialia, 2020. 201: p. 504-516.

15.Ding, J., et al., Microstructure and tensile behavior of nanostructured gradient TWIP steel. Materials Science and Engineering: A, 2020. 785: p. 139346.

16.Cho, J., et al., Temperature effect on mechanical response of flash-sintered ZnO by in-situ compression tests. Acta Materialia, 2020. 200: p. 699-709.

17.Cho, J., et al., Extrinsic size dependent plastic deformability of ZnS micropillars. Materials Science and Engineering: A, 2020. 792: p. 139706.

18.Chen, Y. and J. Li, Nanostructured Materials under Extreme Environments. JOM, 2020(in press).

19.Zhang, Y., et al., Size dependent strengthening in high strength nanotwinned Al/Ti multilayers. Acta Materialia, 2019. 175: p. 466-476.

20.Wang, H., et al., Key microstructural characteristics in flash sintered 3YSZ critical for enhanced sintering process. Ceramics International, 2019. 45(1): p. 1251-1257.

21.Wang, H., et al., Staged microstructural study of flash sintered titania. Materialia, 2019. 8: p. 100451.

22.Song, M. and e. al., Grain refinement mechanisms and strength-hardness correlation of ultra-fine grained grade 91 steel processed by equal channel angular extrusion. International Journal of Pressure Vessels and Piping, 2019(in press).

23.Shang, Z., et al., Response of solidification cellular structures in additively manufactured 316 stainless steel to heavy ion irradiation: an in situ study. Materials Research Letters, 2019. 7(7): p. 290-297.

24.Shang, Z., et al., Tailoring the strength and ductility of T91 steel by partial tempering treatment. Acta Materialia, 2019. 169: p. 209-224.

25.Li, J., et al., Nanoscale stacking fault–assisted room temperature plasticity in flash-sintered TiO2. Science advances, 2019. 5(9): p. eaaw5519.

26.Fan, Z., et al., An in situ study on Kr ion–irradiated crystalline Cu/amorphous-CuNb nanolaminates. Journal of Materials Research, 2019. 34(13).

27.Fan, C., et al., 9R phase enabled superior radiation stability of nanotwinned Cu alloys via in situ radiation at elevated temperature. Acta Materialia, 2019. 167: p. 248-256.

28.Fan, C., et al., Radiation induced nanovoid shrinkage in Cu at room temperature: An in situ study. Scripta Materialia, 2019. 166: p. 112-116.

29.Fan, C., et al., Dual Beam In Situ Radiation Studies of Nanocrystalline Cu. Materials, 2019(in press).

30.Fan, C., et al., Helium irradiation induced ultra-high strength nanotwinned Cu with nanovoids. Acta Materialia, 2019. 177: p. 107-120.

31.Ding, J. and e. al., Thick grain boundary induced strengthening in nanocrystalline Ni alloy. Nanoscale, 2019(in press).

32.Cho, J., et al., Study of deformation mechanisms in flash-sintered yttria-stabilized zirconia by in-situ micromechanical testing at elevated temperatures. Materials Research Letters, 2019. 7(5): p. 194-202.

33.Cho, J., et al., Comparison of temperature dependent deformation mechanisms of 8YSZ thermal barrier coatings prepared by air-plasma-spray and D-gun thermal spray: An in situ study. Journal of the European Ceramic Society, 2019. 39(10): p. 3120-3128.

34.Zhang, Y., et al., Ultra-strong nanotwinned Al–Ni solid solution alloys with significant plasticity. Nanoscale, 2018. 10(46): p. 22025-22034.

35.Zhang, X., et al., Radiation damage in nanostructured materials. Progress in Materials Science, 2018. 96: p. 217-321.

36.Shang, Z., et al., In situ study on surface roughening in radiation-resistant Ag nanowires. Nanotechnology, 2018. 29(21): p. 215708.

37.Li, J., et al., Superior twin stability and radiation resistance of nanotwinned Ag solid solution alloy. Acta Materialia, 2018. 151: p. 395-405.

38.Li, J., H. Wang, and X. Zhang, A review on the radiation response of nanoporous metallic materials. Jom, 2018. 70(11): p. 2753-2764.

39.Li, J., et al., In situ studies on irradiation resistance of nanoporous Au through temperature-jump tests. Acta Materialia, 2018. 143: p. 30-42.

40.Li, J., et al., In situ study on enhanced heavy ion irradiation tolerance of porous Mg. Scripta Materialia, 2018. 144: p. 13-17.

41.Du, C., et al., Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance. Nature communications, 2018. 9(1): p. 1-9.

42.Ding, J., et al., Mechanical behavior of structurally gradient nickel alloy. Acta Materialia, 2018. 149: p. 57-67.

43.Cho, J., et al., High temperature deformability of ductile flash sintered ceramics via in-situ compression. Nature Communications, 2018. 9: p. 2063.

44.Cho, J., et al., In-situ high temperature micromechanical testing of ultrafine grained yttria-stabilized zirconia processed by spark plasma sintering. Acta Materialia, 2018. 155: p. 128-137.

45.Wang, W., et al., Characterization of electrical properties of organic-rich shales at nano/micro scales. Marine and Petroleum Geology, 2017. 86: p. 563-572.

46.Li, J., et al., In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au. Scientific reports, 2017. 7(1): p. 1-10.

47.Li, J., et al., In situ studies on twin-thickness-dependent distribution of defect clusters in heavy ion-irradiated nanotwinned Ag. Metallurgical and Materials Transactions A, 2017. 48(3): p. 1466-1473.

48.Fan, Z., et al., Tailoring plasticity of metallic glasses via interfaces in Cu/amorphous CuNb laminates. Journal of Materials Research, 2017. 32(14): p. 2680-2689.

49.Fan, Z., et al., “Ductile” fracture of metallic glass nanolaminates. Advanced Materials Interfaces, 2017. 4(21): p. 1700510.

50.Fan, C., et al., In situ studies on the irradiation-induced twin boundary-defect interactions in Cu. Metallurgical and Materials Transactions A, 2017. 48(11): p. 5172-5180.

51.Fan, C., et al., Defect evolution in heavy ion irradiated nanotwinned Cu with nanovoids. Journal of Nuclear Materials, 2017. 496: p. 293-300.

52.Yu, K., et al., Measurement of heavy ion irradiation induced in-plane strain in patterned face-centered-cubic metal films: An in situ study. Nano letters, 2016. 16(12): p. 7481-7489.

53.Li, L., et al., Self-assembled epitaxial Au–Oxide vertically aligned nanocomposites for nanoscale metamaterials. Nano letters, 2016. 16(6): p. 3936-3943.

54.Li, J., et al., Comparison of size dependent strengthening mechanisms in Ag/Fe and Ag/Ni multilayers. Acta Materialia, 2016. 114: p. 154-163.

55.Chen, Y., et al., In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers. Journal of nuclear materials, 2016. 475: p. 274-279.

56.Chen, Y., et al., In situ studies on radiation tolerance of nanotwinned Cu. Acta Materialia, 2016. 111: p. 148-156.

57.Xue, S., et al., The formation mechanisms of growth twins in polycrystalline Al with high stacking fault energy. Acta Materialia, 2015. 101: p. 62-70.

58.Sun, C., et al., Resilient ZnO nanowires in an irradiation environment: An in situ study. Acta Materialia, 2015. 95: p. 156-163.

59.Li, J., et al., In situ study of defect migration kinetics and self-healing of twin boundaries in heavy ion irradiated nanotwinned metals. Nano letters, 2015. 15(5): p. 2922-2927.

60.Chen, Y., et al., Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers. Acta Materialia, 2015. 84: p. 393-404.

61.Okamoto, S., et al., Frequency and time dependent microwave assisted switching behaviors of Co/Pt nanodots. Applied Physics Express, 2012. 5(4): p. 043001.


会议报告


特邀报告

1. MS&T 2017 国际会议, “In situ studies on irradiation response of nanoporous metals”, 2017年10月

2. 美国阿贡国家研究室, “Radiation response of nanotwinned and nanoporous metals”, 2018年4月

3. CAARI 2018 国际会议, “Irradiation response of twin boundaries in FCC metals with low SFE”, 2018年8月

4. 上海交通大学, “Radiation response of nanotwinned and nanoporous metals”, 2019年1月

5. 北京大学, “Radiation response of nanotwinned and nanoporous metals”, 2019年1月

6. 第十届全国金属材料优秀青年学者论坛, “Materials under extreme conditions: An in situ study”, 2019年5月

7. 2020“核能前沿科技”青年学术论坛, “特殊环境中材料服役行为的先进原位分析”, 2020年8月

8. 第十二届全国金属材料优秀青年学者论坛, “特殊环境中材料服役行为的先进原位分析”, 2010年11月


大会报告

2019 – 2020 年

1. MS&T 2019 conference, Portland, USA.

会场:Sintering and Related Powder Processing Science and Technologies

题目:Room temperature plasticity in flash-sintered TiO2 (oral presentation)

2. TMS 2019 Annual Meeting & Exhibition, San Antonio, USA

会场:Mechanical Behavior Related to Interface Physics III

题目:Mechanical behavior of nanotwinned metals under micropillar compression: An in situ study (poster)


2018 – 2019 年

1. MRS 2018 Fall Meeting & Exhibit, Boston, USA

会场:Fundamentals of Materials Property Changes Under Irradiation

题目:Enhanced twin stability against irradiation in nanotwinned solid solution alloys (oral presentation)

2. TMS 2018 Annual Meeting & Exhibition, Phoenix, USA

会场:Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling,

题目:Irradiation response of twin boundaries in face-centered cubic metals with low stacking fault energy (poster)


2017 - 2018 年

1. MRS 2017 Fall Meeting & Exhibit, Boston, USA

会场:Advanced Nuclear Materials—Design, Development and Deployment

题目:In situ studies on irradiation response of nanoporous metals (oral presentation)

2. AVS 2017, Tampa, USA

会场:2D, 3D and nD Imaging of Surfaces, Buried Interfaces and Nanostructures

题目:In situ studies on irradiation response of nanoporous metals (oral presentation)

3. TMS 2017 Annual Meeting & Exhibition, San Diego, USA

会场:Advancements in In-situ Electron Microscopy Characterization II

题目:In situ studies on radiation resistance of nanoporous metals (oral presentation)


2016 - 2017 年

1. TMS 2016 Annual Meeting & Exhibition, Nashville, USA

会场:In Operando Nano- and Micro-mechanical Characterization of Materials with Special Emphasis on In Situ Techniques

题目:In Situ Study of Defect Migration Kinetics and Self-Healing of Twin Boundaries in Heavy Ion Irradiated Nanotwinned Metals (oral presentation)

2. MRS 2016 Fall Meeting & Exhibit, Boston, USA

会场:Shear Transformation Mechanisms and Their Effect on Mechanical Behavior of Crystalline

Materials

题目:Comparison of size dependent strengthening mechanisms in Ag/Fe and Ag/Ni multilayers (oral presentation)


2015 - 2016 年

1. MRS 2015 Fall Meeting & Exhibit, Boston, USA

会场:Microstructure Evolution and Mechanical Properties in Interface-Dominated Metallic Mate

题目:In Situ Study of Defect Migration Kinetics and Self-Healing of Twin Boundaries in Heavy Ion Irradiated Nanotwinned Metals (oral presentation)

2. SES 2015 Annual Meeting, College Station, USA

题目:In Situ Study of Defect Migration Kinetics and Self-Healing of Twin Boundaries in Heavy Ion Irradiated Nanotwinned Metals (oral presentation)


招生信息


课题组长年招收硕士、博士、以及博士后,欢迎加入!课题组常年与国外研究机构保持密切的合作关系,可以为科研能力优秀的同学提供国际合作、访学以及海外高校深造推荐等机会。相关研究领域请见“研究方向”。


硕士:4名


博士:2名


博士后:1名

要求:

具有较强动手能力,可以胜任科研设备的管理维护工作;

具有良好的材料科学基础,具有材料辐照效应或磁控溅射技术研究经验者优先;

具有良好的团队合作精神,努力自律,善于思考和沟通;

有发现问题、解决问题的能力;

具有良好的英语水平。

待遇:

1. 年薪30-40万(含18万元深圳市政府补贴);

2. 鼓励申请“博士后创新人才支持计划”,国家可给予每人两年60万元的资助,其中40万元为博士后日常经费,20万元为博士后科学基金;

3. 优秀博士后出站前可申请学校优秀博士后奖励(16万元);

4. 福利:享受五险一金;

5. 住房:可租住深圳市人才公寓,或享受深圳市政府租房补贴。

 




上一条:陈洪生

下一条:简劼